Zoledrinic Acid Induces Steoblastic Differentiation of Mesenchymal Stem Cells without Change in Hypomethylation Status of OSTERIX Promoter
نویسندگان
چکیده
OBJECTIVE Mechanism of zoledronic acid on osteoblastic differentiation of mesenchymal stem cells (MSCs) has not fully understood. With the knowledge of some drugs mechanism that alter methylation pattern of some genes, the present research sets out to evaluate osterix (OSX) promoter methylation pattern during zoledronic acid-induced osteoblastic differentiation of MSCs. MATERIALS AND METHODS In this experimental study, MSCs were isolated from human bone marrow. For osteogenic differentiation, MSCs were pulse treated with 5ìM Zoledronic acid for 3 hours and incubated after a medium change in osteogenic differentiation medium for 3 weeks. DNA and RNA were extracted on days 0, 7, 14 and 21 of MSCs differentiating to osteoblast. After cDNA synthesis, OSX expression was evaluated by RT-PCR and quantitative Real-Time PCR. After multiplicity of infection (MOI) treatment, gene specific methylation of OSX was analyzed by methylation specific PCR (MSP). RESULTS The mRNA expression of OSX was increased in osteoblast differentiated cells induced by zoledronic acid, especially on days 14 and 21 of differentiation (p<0.05), but expression of OSX didn't change in undifferentiated MSCs. MSP revealed that, on day 0, undifferentiated MSCs are totally methylated. But, on day 7 of differentiation, MSCs treated by zoledronic acid were totally unmethylated. OSX promoter remained unmethylated, afterwards. CONCLUSION MSP revealed that OSX had a dynamic pattern in methylation, while MSCs gradually differentiated to osteoblasts. Our finding showed that promoter region of OSX is hypomethylated independently from zoledronic acid treatment during osteoblastic differentiation. This knowledge is important to understand drug mechanisms and can be useful for developing new therapies to combat against bone diseases.
منابع مشابه
Evaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...
متن کاملThe effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells
Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...
متن کامل